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Abstract

Kyburg goes half-way towards objective Bayesianism. He accepts that
frequencies constrain rational belief to an interval but stops short of iso-
lating an optimal degree of belief within this interval. I examine the case
for going the whole hog.
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§1
Partial Beliefs

Bayesians argue that an agent’s degrees of belief ought to satisfy the axioms of
the probability calculus. Thus for example if A is the outcome that it will snow in
Stroud today, and p(A) is the agent’s degree of belief in A, then p(A)+p(Ā) = 1,
where Ā is the complement of A, i.e. the outcome that it will not snow in Stroud
today.

But Bayesians differ as to whether degrees of belief should satisfy any fur-
ther constraints.1 Suppose our agents know only that the physical probability
(frequency or propensity) of it snowing in Stroud on a day like today is between
0.2 and 0.3. Then the three main views can be formulated thus:

Subjective Bayesianism maintains that an agent can set her degree of belief
to any value between 0 and 1. Thus one agent can choose degree of
belief p(A) = 0, another can choose q(A) = 0.25 and a third can choose
r(A) = 1—all are equally rational.2

Empirically-Based Subjective Bayesianism maintains that an agent’s de-
grees of belief ought to be constrained by empirical knowledge such as
knowledge of frequencies. In our example, agents should set their degrees
of belief between 0.2 and 0.3, but degrees of belief p(A) = 0.2, q(A) =
0.25, r(A) = 0.3 are equally rational.3

Objective Bayesianism maintains not only that an agent’s degrees of belief
ought to be constrained by empirical knowledge, but also that degrees of
belief should be as middling as possible—as far away as possible from the
extremes of 0 and 1. In our example there are two outcomes A and Ā,
the middling assignment of belief gives p(A) = p(Ā) = 1/2, and the value
in the interval [0.2, 0.3] that is closest to the middling value is 0.3. Thus
an agent should assign p(A) = 0.3, and agents that assign other degrees
of belief are irrational. The agent’s degrees of belief are objectively deter-
mined by her background knowledge and there is no room for subjective
choice.4

There is also an important non-Bayesian position that is related to empirically-
based subjective Bayesianism. Under this view (advocated for instance by Henry
Kyburg)5 empirical knowledge should constrain an agent’s partial beliefs, but
these partial beliefs are not in general real numbers—they are intervals instead.
Thus in our example an agent should adopt the interval [0.2, 0.3] as her partial

1I am concerned here with constraints on prior degrees of belief. Diachronic constraints,
e.g. Bayesian conditionalisation, will be discussed in §4.

2Bruno de Finetti was an influential subjective Bayesian—see de Finetti (1937).
3This view was adopted by Frank Ramsey: ‘it will in general be best for his degree of belief

that a yellow toadstool is unwholesome to be equal to the proportion of yellow toadstools which
are in fact unwholesome.’ (Ramsey, 1926, p. 50). Colin Howson is a recent proponent of this
type of position—see Howson and Urbach (1989, §13.e) for instance. Salmon (1990) also
advocates a version of this view.

4Edwin Jaynes is an influential objective Bayesian—see Jaynes (2003). The essential fea-
ture of objective Bayesianism is not that degrees of belief be uniquely determined by back-
ground knowledge—this is too much to ask in infinite domains (Williamson, 2006, §19)—but
that constraints on degrees of belief go beyond purely empirical constraints.

5(Kyburg Jr and Teng, 2001)
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belief in A. Because of their common ground, I shall classify empirically-based
subjective probability and Kyburg’s probability-interval position as empirical-
constraint theories.

Subjective Bayesianism is attractive because it is easy to justify: one only
needs an argument that degrees of belief ought to be probabilities, and the
Dutch book argument does this job quite well.6 However, many applications
of probability demand objectivity; the other positions, though philosophically
more taxing, are more appealing in that respect.7 Here I shall take it for granted
that empirical constraints on partial belief are desirable.

The aim of this chapter is to examine the motivation for moving beyond em-
pirical constraints to the stronger constraints advocated by objective Bayesian-
ism. Is it enough to restrict partial beliefs to probability intervals, as recom-
mended by Kyburg and empirically-based subjective Bayesians? Or should one
strive for the extra objectivity afforded by the most middling degrees of belief
within such intervals?8

The plan is to introduce the objective Bayesian framework and its standard
justifications in §2 and §3. While these standard justifications are lacking for
our purposes, one can appeal to considerations of objectivity (§4), efficiency (§6)
or caution (§8) to try to decide between objective Bayesianism and empirical
constraint theories. As we shall see in §8, objective Bayesianism clearly surpasses
empirically-based subjective Bayesianism in terms of caution. On the other
hand, Kyburg’s approach appears to be superior to objective Bayesianism in
this respect (§11). However I shall argue that, taking several considerations
into account, a case can be made for objective Bayesianism.

§2
The Maximum Entropy Principle

Objective Bayesianism appeals to the maximum entropy principle to determine
the degrees of belief that an agent ought to adopt on the basis of background
knowledge β.9 In this section I shall introduce the principle and, in §3, its key
justifications.

Given a finite outcome space Ω = {A1, . . . , An}, i.e. a set of mutually ex-
clusive and exhaustive outcomes, the most middling probability function, the
central function, assigns each outcome the same probability, c(Ai) = 1/n for
i = 1, . . . , n. Let Pβ be the set of all probability functions that satisfy con-
straints imposed by the agent’s background knowledge β. Objective Bayesians

6(Ramsey, 1926; de Finetti, 1937)
7De Finetti argued that subjective Bayesians can account for objectivity since under certain

conditions (e.g. degrees of belief must satisfy an exchangeability assumption and must be
updated by Bayesian conditionalisation) different agents’ degrees of belief will converge to
a single objective value in the limit. However these conditions are controversial and are by
no means guaranteed to hold. Moreover, this line of argument does nothing to allay worries
about a lack of objectivity in the short run: those whose degrees of belief fail to reflect their
empirical knowledge may simply do worse in the short run.

8The focus of this chapter is purely the motivation behind objective Bayesianism. There are
number of other interesting challenges facing objective Bayesianism—e.g. does it suffer from
representation dependence? does it apply to infinite as well as finite domains? Interesting as
they are, these questions are beyond the scope of this chapter. See Williamson (2006) for an
overview of these other challenges.

9(Jaynes, 1957)
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Figure 1: Probability functions (dotted line) and their entropy H (solid curve)
in two dimensions.

suggest that the agent should adopt as a representation of her degrees of belief
a probability function in Pβ that is closest to the central function. Now distance
between probability functions is normally measured by cross-entropy ,

d(p, q) =
n∑

i=1

p(Ai) log
p(Ai)
q(Ai)

.

Thus the function in Pβ that is closest to c is the function that minimises

d(p, c) =
n∑

i=1

p(Ai) log p(Ai) +
n∑

i=1

p(Ai) log n =
n∑

i=1

p(Ai) log p(Ai) + log n.

This distance is minimised by the function p that has maximum entropy

H(p) = −
n∑

i=1

p(Ai) log p(Ai).

Thus

Maximum Entropy Principle Suppose Pβ is the set of probability functions
that satisfies constraints imposed by the agent’s background knowledge β.
The agent should select the member of Pβ that maximises entropy as her
belief function.

If there are two outcomes Ω = {A,B} then p(B) = 1− p(A), as depicted by
the dotted line in Fig. 1. Entropy H is depicted by the solid line. Clearly the
closer to the centre of the dotted line, the higher the entropy.

Fig. 2 is the corresponding visualisation of the three outcome case, Ω =
{A,B, C}. The probability functions are depicted by the plane and their entropy
by the curved surface.
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Figure 2: Probability functions (plane) and their entropy H (curved surface) in
three dimensions.

§3
Standard Justifications

There are two major arguments in favour of the maximum entropy principle,
but neither of these conclusively decide between objective Bayesianism and the
empirically-based approach, as we shall now see.

The original justification of the maximum entropy principle in Jaynes (1957)
is perhaps best known. This justification appeals to Claude Shannon’s use
of entropy as a measure of the uncertainty embodied in a probability func-
tion.10 Jaynes maintains that an agent’s belief function should be informed
by background knowledge but should otherwise be maximally uncertain or non-
committal—thus it should have maximum entropy according to Shannon’s mea-
sure:

in making inferences on the basis of partial information we must use
that probability distribution which has maximum entropy subject
to whatever is known. This is the only unbiased assignment we can
make; to use any other would amount to arbitrary assumption of
information which by hypothesis we do not have.

. . .

The maximum entropy distribution may be asserted for the positive
reason that it is uniquely determined as the one that is maximally
noncommittal with regard to missing information.11

10(Shannon, 1948, §6)
11(Jaynes, 1957, p. 623)
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The gap in the argument is clear. Jaynes assumes that maximally non-
committal, unbiased degrees of belief are most desirable and argues that they
should then be found by maximising entropy. Even if we grant Jaynes that
entropy measures lack of commitment, we still need some reason to accept his
premiss. Why should maximally non-committal degrees of belief be any better
than, say, maximally committal degrees of belief? Why is bias bad?

The second key line of argument in favour of the maximum entropy principle
takes the form of an axiomatic derivation. There are various versions, but the
derivation of Jeff Paris and Alena Vencovská is perhaps most compelling.12

Their argument takes the following form:

◦ An inference process is a function which maps a domain and background
knowledge involving that domain to a probability function on the domain
that satisfies the background knowledge.

◦ If the selected probability function is to be construed as a representation of
the degrees of belief that one ought to adopt on the basis of the background
knowledge, then the inference process ought to satisfy some common-sense
desiderata. For example, given two logically equivalent knowledge bases
the inference process should select the same probability function.13

◦ The only inference process that satisfies these desiderata is the maximum
entropy principle.

. The only commonsensical inference process is the maximum entropy prin-
ciple.

Again, even if we grant that the only inference process satisfying the desider-
ata is the maximum entropy principle, this argument does not do enough for
our purposes. It assumes from the outset that we need an inference process,
i.e. that we need to select a single probability function that satisfies the back-
ground knowledge (Kyburg would disagree with this) and that this probability
function must be uniquely determined by domain and background knowledge
(empirically-based subjectivists would disagree with this, arguing that different
individuals are free to choose different belief functions on the basis of the same
background knowledge).

Paris and Vencovská (2001, §3) do relax the uniqueness requirement when
they consider the case in which background knowledge imposes non-linear con-
straints on degrees of belief. Their modified argument is unlikely to satisfy the
empirical constraint theorist, however, because some of their desiderata go sig-
nificantly beyond the empirical constraints imposed by background knowledge.
The Renaming Principle, for instance, dictates that (background knowledge per-
mitting) degrees of belief should be invariant under permutations of the domain;
the Independence Principle holds that in certain cases degrees of belief should
be independent if there is no evidence of dependence. While these desiderata
may be commonsensical, they are not merely empirical, and more justification
is required to convince the proponent of an empirical constraint theory.14

12(Paris and Vencovská, 1990, 2001; Paris, 1994)
13See e.g. Paris (1994) for a full list of the desiderata.
14Hosni and Paris (2005) explore a line of justification of the desiderata, claiming that they

are commonsensical because they force us to assign similar probabilities, and that conformity
is some kind of rational norm. Again, many would take issue with these claims. Assigning
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So we see that current justifications of the maximum entropy principle do not
fully motivate the move from empirical constraints to objective Bayesianism—
they presume that an agent’s degrees of belief should be maximally non-commit-
tal or that they should be fully determined by background knowledge and do-
main. Further argument is needed.

§4
The Argument from Objectivity

One might try to construct an argument around the suggestion that empirically-
based subjective Bayesianism is not objective enough for many applications of
probability.15 If applications of probability require full objectivity—i.e. a single
probability function that fits available evidence—then the axiomatic justifica-
tion kicks in and one can argue that the maximum entropy function is the only
rational choice.

The typical Bayesian methodology involves the following process, called
Bayesian conditionalisation. First a prior probability function p must be pro-
duced. Then empirical evidence E is collected. Finally predictions are drawn
using the posterior probability function p′(A) = p(A|E). Now the prior func-
tion is determined before empirical evidence is available; this is entirely a matter
of subjective choice for empirically-based subjectivists. However, the ensuing
conclusions and predictions may be sensitive to this initial choice of prior, ren-
dering them subjective too. If, for example, p(A) = 0 then p′(A) = p(A|E) =
p(E ∧ A)/p(E) = 0 (assuming p(E) > 0). On the other hand, if q(A) = 1 then
q′(A) = q(E|A)q(A)/(q(E|A)q(A) + q(E ∧ Ā)) = q(E|A)/q(E|A) = 1.

It is plain to see that two empirically-based subjectivists can radically dis-
agree as to the conclusions they draw from evidence. If they adopt the opposite
prior beliefs they will draw the opposite conclusions. Under the empirically-
based subjectivist approach, if conditionalisation is adopted then all conclusions
are relative to initial opinion.

If the empirically-based subjectivist is to avoid such strong relativity, she
must reject Bayesian conditionalisation as a universal rule of updating degrees
of belief. The standard alternative is cross entropy updating .16 Here the agent
adopts prior belief function p and her posterior p′ is taken to be the probability
function, out of all those that are compatible with the new evidence, that is
closest to p in terms of cross-entropy distance. (Note that, unlike the Bayesian
conditionalisation case, the evidence does not have to be representable as a
domain event E.)

Suppose Ω = {A,B} for instance. Two empirically-based subjectivists may
set p(A) = 0 and q(A) = 1 respectively, while an objective Bayesian is forced to
set r(A) = 1/2 in the absence of any empirical evidence. Now suppose evidence
is collected that constrains the probability of A to lie in the interval [0.6, 0.9].

similar probabilities may be of pragmatic advantage, but hardly seems to be requirement of
rationality except in special cases (see §4 and Gillies (1991)). Nor need this consequence of
the desiderata render the desiderata commonsensical in themselves—the end doesn’t justify
the means.

15Note that Salmon (1990, §4) argues for a version of empirically-based subjective Bayesian-
ism on the grounds that subjective Bayesianism is not objective enough for science.

16(Williams, 1980; Paris, 1994, pp. 118–126)
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The objective Bayesian must adopt r′(A) = 0.6 while the empirically-based
subjectivists now adopt posteriors p′(A) = 0.6 and q′(A) = 0.9 respectively.
Thus with cross entropy updating evidence can shift degrees of belief away from
0 and 1.

While cross entropy updating may be an improvement over Bayesian condi-
tionalisation, one might argue that the remaining relativity in empirically-based
subjective Bayesianism is too still much for applications of probability if appli-
cations demand full objectivity.

But such an argument would be hard to execute. First, one would ex-
pect that the amount of tolerable subjectivity would vary from application to
application—it is unlikely to be the case that all applications of probability
demand full objectivity. While objectivity of conclusions seems desirable in a
computer system for controlling nuclear retaliation, it is clearly less desirable in
an automated oenophile.

Second, it is difficult to judge the need for objectivity. Scientists often em-
phasise the objectivity of their disciplines, but it can be difficult to say whether
their claims reflect their sciences’ needs for objectivity or their own. (Of course,
a perceived objectivity of science is rhetorically very useful to scientists—their
conclusions appear more forceful.) Moreover, even if scientific methodology does
assume an inherent objectivity, such an assumption may simply be erroneous.
There may be less objectivity to be found than commonly supposed.17 These
difficulties have led to widespread disagreement between sociologists of science
on the one hand, many of whom view scientific conclusions as highly relative,
and philosophers of science and scientists on the other hand, many of whom view
science as an objective activity by-and-large.18 Until some (objective) common
ground can be found in the study of science, we are a long way from deter-
mining whether the extreme objectivity of objective Bayesianism is required in
science, or whether the more limited objectivity of empirically-based subjective
Bayesianism is adequate.

Finally, even in cases where objectivity is required, that objectivity need
not necessarily incline one towards objective Bayesianism. In order to run the
axiomatic derivation of the maximum entropy principle (§3), one must first ac-
cept that the common-sense desiderata are indeed desirable. If not, one may
be led to alternative implementations of the objectivity requirement. Consider
the minimum entropy principle: if Ω = {A1, . . . , An} choose as belief function
the probability function, out of all those that satisfy constraints imposed by
background knowledge β, that is as close as possible to the function p that sets
p(A1) = 1, p(A2) = · · · = p(An) = 0. This is objective in the sense that once
the domain and its ordering has been fixed, then so too is the prior probabil-
ity function. Moreover this principle is not as daft as it may first look—there
may be semantic reasons for adopting such an unbalanced prior. Consider a
criminal trial setting: Ω = {A1, A2} where A1 represents innocence and A2 rep-
resents guilt, and where there is no background knowledge—then the minimum
entropy principle represents a prior assumption of innocence; this is in fact the
recommended prior.19

Note too that while the issue of objectivity might help decide between
17Press and Tanur (2001) present a case for subjectivity in science.
18(Gottfried and Wilson, 1997)
19I am very grateful to Amit Pundik for suggesting this example. See §8 for more on the

criminal trial setting.
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empirically-based subjective Bayesianism and objective Bayesianism, it can not
decide between Kyburg’s probability interval approach and objective Bayesian-
ism, since neither of these approaches permit subjective choice of partial beliefs:
background knowledge fully determines the partial beliefs that an agent ought
to adopt.

In sum, while it may be tempting to argue for objective Bayesianism on the
grounds that applications of probability demand objective conclusions, there
are several hurdles to be overcome before a credible case can be developed.

§5
Rationality and Evidence

One thing should be clear by now: it can not be empirical warrant that moti-
vates the selection of a particular belief function from all those compatible with
background knowledge, since all such belief functions are equally warranted
by available empirical evidence. If objective Bayesianism is to be preferred over
empirical-constraint approaches, it must be for non-evidential reasons. (Equally,
one can’t cite evidence as a reason for abandoning objective Bayesianism in
favour of an empirical-constraint approach.)

Thus the problem of deciding between objective Bayesianism and empirical-
constraint approaches hinges on the question of whether evidence exhausts ra-
tionality. Objective Bayesianism supposes that there is more to rationality than
evidence: a rational agent’s degrees of belief should not only respect empirical
evidence, they should also be as middling as possible. For empirical-constraint
approaches, on the other hand, empirical warrant is sufficient for rationality.
(This puts the empirical constraint theorist at a disadvantage, because from the
empirical perspective there simply are no considerations that can be put for-
ward to support an empirical constraint theory over objective Bayesianism since
both are empirically optimal; in contrast, the objective Bayesian can proffer
non-empirical reasons to prefer objective Bayesianism over empirical constraint
theories.)

If rationality goes beyond evidence, what else does it involve? We have
already discussed one form of non-evidential reason that might decide between
the two types of approach—a demand for objectivity. But there are other more
overtly pragmatic reasons that can be invoked to the same end. In §8 we shall
see whether caution can be used to motivate objective Bayesianism. But first
we turn to efficiency.

§6
The Argument from Efficiency

One might be tempted to appeal to efficiency considerations to distinguish be-
tween objective Bayesianism and empirically-based subjective Bayesianism. If
objective Bayesian methods are more efficient than empirically-based subjective
Bayesian methods then that would provide a reason to prefer the former over
the latter.

One possible line of argument proceeds as follows. If probabilities are in any
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way subjective then their measurement requires finding out which particular
degrees of belief have been chosen by some agent. This can only be done by
elicitation: asking the agent what her degrees of belief are, or perhaps induc-
ing them from her behaviour (e.g. her betting behaviour). But, as developers
of expert systems in AI have found, elicitation and the associated consistency-
checking are prohibitively time-consuming tasks (the inability of elicitation to
keep pace with the demand for expert systems is known as Feigenbaum’s bot-
tleneck). If subjective Bayesianism or empirically-based subjective Bayesianism
is to be routinely applied throughout the sciences it is likely that a similar bot-
tleneck will be reached. For example, determining the most probable statistical
model given evidence would first require eliciting model assumptions (are the
agent’s degrees of belief normally distributed, for instance? are certain degrees of
belief probabilistically independent?) and also the agent’s prior degree of belief
in each model—a daunting task. On the other hand, if objective Bayesianism is
adopted, degrees of belief are objectively determined by background knowledge
and elicitation is not required—degrees of belief are calculated by maximising
entropy. Therefore objective Bayesianism is to be preferred for reasons of effi-
ciency.

Of course this argument fails if the objective Bayesian method is itself more
computationally intractable than elicitation. Indeed Judea Pearl rejected the
maximum entropy principle on the grounds that computational techniques for
maximising entropy were usually intractable (Pearl, 1988, p. 463). However,
while that was indeed the case in 1988, it is not the case now. Pearl’s own
favoured computational tool, Bayesian nets, can be employed to vastly re-
duce the complexity of entropy maximisation, rendering the process tractable
in a wide variety of natural settings—see Williamson (2005a, §§5.5–5.8) and
Williamson (2005b). Thus despite Pearl’s doubts, efficiency considerations do
lend support to objective Bayesianism after all.

But efficiency considerations on their own fail to distinguish between ob-
jective Bayesianism and other procedures for selecting a unique probability
function. The maximum entropy principle is no more efficient than the mini-
mum entropy principle. Worse, consider the blind minimum entropy principle,
where one ignores background knowledge and minimises entropy straight off:
if Ω = {A1, . . . , An} choose as belief function the probability function p such
that p(A1) = 1 and p(A2) = · · · = p(An) = 0. This modified principle avoids
elicitation and is far easier to implement than the maximum entropy principle.
Should one really blindly minimise entropy?

If not, efficiency can’t be the whole story. At best one can say something like
this: efficiency considerations tell against elicitation and motivate some proce-
dure for mechanically determining an agent’s degrees of belief; other desiderata
need to be invoked to determine exactly which procedure; the axiomatic deriva-
tion can then be used to show that the maximum entropy principle is the only
viable procedure.

While this is an improvement over the argument from objectivity, it is still
rather inconclusive as it stands. Further work needs to be done to explain why
efficiency isn’t the whole story, i.e. to explain why the other desiderata override
efficiency considerations. The other desiderata thus play an important role in
this new argument, and stand in need of some form of justification themselves.
Given that empirically-based subjectivists would find several of these desiderata
dubious, their justification may turn out to be more of an ordeal than elicitation.
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§7
Derivation versus Interpretation

We have seen that the arguments from objectivity and efficiency require an
appeal to the axiomatic derivation of the maximum entropy principle, and hence
to the desiderata presupposed by that derivation. Some of these desiderata
are hard to justify—empirically-based subjectivists would simply deny their
desirability. Hence the arguments from objectivity and efficiency flounder.

Such difficulties are bound to beset any derivation of the maximum entropy
principle. If the principle MEP is a logical consequence of assumptions A,
i.e. |= A → MEP , then the assumptions A must be at least as strong as the
maximum entropy principle and are unlikely to be trivially true. Empirically
based subjectivists, who reject the maximum entropy principle, can just use the
contrapositive of the derivation, |= MEP → Ā as an argument for the falsity of
the assumptions. Thus what is an argument in favour of the maximum entropy
principle for the objective Bayesian is nothing of the sort for the empirically-
based subjectivist. Consequently a derivation of the maximum entropy principle
is unlikely to be of help to us in our quest to motivate objective Bayesianism.

But Jaynes’ original justification, which proceeds by interpreting lack of
commitment as entropy rather than deriving the maximum entropy principle,
does not suffer from these difficulties. It requires an assumption, namely that
one ought to be maximally non-committal, but that assumption is relatively
weak—much of the work is being done by the act of interpretation.

Consider an analogy: the principle, adopted by all Bayesians, that degrees
of belief should satisfy the axioms of probability. If we try to derive the axioms
of probability from some assumptions then those assumptions will have to be
at least as logically strong as the axioms, and hence at least as controversial.20

Instead it is more usual to interpret degrees of belief as betting quotients21 and
then to show that the axioms of probability must hold on pain of incoherence.22

This argument is not simply a drawing-out of logical consequences; the act of
interpretation is doing significant work. Yet this interpretation is rather natural
and can itself be justified. As Ramsey notes,

this will not seem unreasonable when it is seen that all our lives we
are in sense betting. Whenever we go to the station we are betting
that a train will really run, and if we had not a sufficient degree of
belief in this we should decline the bet and stay at home.23

Similarly, the interpretation of the uncertainty of a probability function as its
entropy is, if not obvious, fully justifiable. Indeed Shannon provided two justi-
fications, a derivation from desiderata, and—more importantly for Shannon—a
pragmatic justification:

20Cox’s derivation of the axioms of probability has been the topic of substantial controversy.
Paris (1994, pp. 24–32) shows that this type of derivation requires strong assumptions; see
also Halpern (1999a,b).

21A betting quotient for event E is a number q that the agent selects on the presumption
that she will make a bet, paying qS with return S if E occurs, where the stake S is to be
chosen after she selects q and may be positive or negative.

22(Ramsey, 1926; de Finetti, 1937)
23(Ramsey, 1926, p. 183)
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This theorem [the derivation from desiderata], and the assumptions
required for its proof, are in no way necessary for the present theory.
It is given chiefly to lend a certain plausibility to some of our later
definitions [including the interpretation of uncertainty as entropy].
The real justification of these definitions, however, will reside in their
implications.24

Indeed Shannon’s definitions have been very fruitful in communication and in-
formation theory and are now well entrenched in several branches of science.

The interpretation of uncertainty as entropy plays a substantial role in
Jaynes’ argument for the maximum entropy principle. The key assumption
(that a lack of commitment is desirable) is relatively meagre, in the sense that
it does not on its own presuppose entropy maximisation. We shall see now that
this assumption can be justified by an appeal to caution.

§8
The Argument from Caution

As Ramsey notes in the above quote, our degrees of belief guide our actions and
our actions are tantamount to bets. To embark on a course of action (such as
going to the station) a degree of belief (in the train running, in this case) must
be sufficiently high. Now, every course of action has its associated risks. Going
to the station only to find that the train is not running wastes time and effort,
and one may miss an important appointment. Such a course of action is not to
be embarked upon lightly, and prudence is required. The trigger for action will
vary according to risk—if a lot hangs on it, one may only go to the station if one
has degree of belief at least 0.95 in the train running, but if the consequences are
less dire, a lower trigger-level, say 0.85, may be appropriate. Suppose one knows
only that the local train operating company has passed the minimum threshold
of eighty percent of trains running. According to empirically-based subjective
Bayesianism, one’s degree of belief in the train running can be chosen from
anywhere in the interval [0.8, 1]. According to objective Bayesianism the least
extreme value in this interval must be chosen: i.e. 0.8. So the empirically-based
subjectivist may decide to go to the station while the objectivist decides not
to. Thus the objective Bayesian decision is more cautious and is to be preferred
since there is no empirical evidence to support a less cautious decision.

In sum, extreme degrees of belief trigger actions and open one up to their
associated risks. In the train example the objective Bayesian strategy of adopt-
ing the least extreme degree of belief seems to be the most prudent. Can one
abstract from this case to argue that objective Bayesianism is to be preferred
in general? There are some potential difficulties with such a move to generality,
as we shall now see.

The first potential problem stems from the fact that it is not only extreme
degrees of belief that trigger actions—middling degrees of belief can also trig-
ger actions. Consider a case where a patient has one of two possible diseases
A and B. A high degree of belief in A will trigger a course of medication to
treat A. Similarly, a high degree of belief in B will trigger treatment of B.

24(Shannon, 1948, §6)
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However, a more middling degree of belief—a degree of belief that triggers nei-
ther treatment of A nor treatment of B—will trigger another action, namely
the gathering of more empirical evidence in order reach a conclusive diagnosis.
Collecting further symptoms from the patient also has its associated costs and
risks: it requires time, effort and money to perform more tests, and some tests
might harm the patient. Now objective Bayesianism advocates setting middling
degrees of belief, thereby exposing the diagnoser to the risks associated with
collecting more symptoms. It seems that objective Bayesianism is not such a
risk-averse position after all.

But this apparent problem does not in fact scupper the prospect of a general
argument in favour of objective Bayesianism. While there are indeed cases in
which middling degrees of belief trigger actions, these actions are always less
risky than those triggered by extreme degrees of belief. Suppose in the above
example that A and B are two types of meningitis, requiring very different
treatment. The risks associated with either outcome are so high that the risks
associated with collecting more symptoms pale into insignificance in comparison.
Suppose on the other hand that A and B are just two strains of cold; A responds
best to a nightly dose of rum toddy while B requires a whisky toddy taken three
times a day; in either case a full recovery will be made even if no treatment is
taken. In this case the risks associated with either diagnosis are so low that in
the absence of a diagnosis it simply is not worth doing the blood test that would
provide conclusive evidence: a more middling degree of belief does not trigger
any action. The point is that collecting further evidence will only be an option
if the resulting knowledge is worth it, i.e. if the costs and risks associated with
the primary outcomes A and B outweigh those associated with collecting new
evidence. Hence it will still be most cautious to have more middling degrees of
belief.

It might be thought that there is a more serious variant of this problem. For
a politician the risks associated with appearing non-committal outweigh those of
committing to an unjustified course of action or making a promise that can’t be
kept. People like their politicians bold and it would seem that a non-committal
objective Bayesian politician would not get elected. But this objection hinges
on a mistaken conflation of appearance and reality. The fact that a politician
should not appear non-committal does not mean that her beliefs should not
actually be non-committal—politicians simply need to mask their beliefs. Their
beliefs need to be as cautious as anyone else’s though: they need to be shrewd
judges of which promises the electorate will swallow, and should not commit to
one lie over another unless they have a justified belief that they can get away
with it.

A second type of problem confronts any attempt to generalise the argument
from caution. This concerns cases in which risks are known to be imbalanced. In
the diagnosis example, take A to be meningococcal meningitis and B to be ’flu.
In this case, the risks associated with failing to diagnose A when it is present are
so great that it may be prudent to assume A and prescribe antibiotics, unless
there is conclusive evidence that decides in favour of B. We have already come
across another example of an imbalance of risks: the risk of judging the innocent
guilty is considered to outweigh that of judging the guilty innocent, and this
motivates a presumption of innocence in criminal cases. Such presumptions
seem far from non-committal, yet rational.

Perhaps the best way of resolving this difficulty is to distinguish appearance
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and reality again. It is important in these cases to act as if one believed one
of the alternatives—to prescribe antibiotics or to release the suspect—not to
actually believe that alternative. In these cases, the imbalanced risks motivate
imbalanced trigger levels rather than imbalanced degrees of belief. If degree of
belief in ’flu is higher than say 0.95 prescribe paracetamol, otherwise, if degree of
belief in meningococcal meningitis is at least 0.05, prescribe antibiotics. If guilt
is not proved beyond reasonable doubt (degree of belief of guilt is not higher
than 0.99 say, in which case degree of belief in innocence is at least 0.01) then
trigger action that corresponds to innocence, i.e. release the suspect. In both
these cases the trigger level for one alternative is very high while the trigger
level for the other alternative is very low.

One might respond to this move by accepting this proposed resolution for the
diagnosis example, but rejecting it for the legal example. One might claim that
in the legal case there should not only be a high standard of reasonable doubt
for guilt and a corresponding low standard of doubt for innocence, but there
should also be prior degree of belief 1 in innocence, in order to make it as hard as
possible for the prosecution to sway degree of belief to beyond reasonable doubt.
This response seems natural enough—it seems right to make it as hard as pos-
sible to trigger guilt. However, this response should not be acceptable to any
Bayesian—whether subjective, empirically-based or objective—because it does
not sit well with Bayesian methods of updating. Recall that in §4 we saw that
there are two standard options for updating an agent’s degree of belief in new
evidence, Bayesian conditionalisation and cross-entropy updating. If Bayesian
conditionalisation is adopted then a prior degree of belief 0 of guilt can never be
raised above 0 by evidence, and it will be impossible to convict anybody. On the
other hand, if cross-entropy updating is adopted then a presumption of inno-
cence will make no difference in the legal example. A presumption of innocence
corresponds to prior degree of belief 0 in guilt, while a maximally non-committal
probability function will yield a prior degree of belief of 1

2 . In either case degree
of belief can only be raised above 0.99 if empirical evidence constrains degree
of belief to lie in some subset of the interval [0.99, 1] (because the cross-entropy
update is the degree of belief, from all those that are compatible with evidence,
that is closest to 1

2 ). As long as the prior degree of belief is lower than the
trigger level for guilt, triggering is dependent only on the evidence, not on prior
degree of belief. In sum, whichever method of updating one adopts there is no
good Bayesian reason for setting prior degree of belief in guilt to be 0.

There is a third, more substantial, problem that besets an attempt to gener-
alise the argument from caution: the maximum entropy principle is not always
the most cautious policy for setting degrees of belief. Consider a case in which
there are three elementary outcomes, Ω = {A,B,C}, a risky action is triggered
if p({A,B}) ≥ 7/8 and another risky action is triggered if p({B,C}) ≥ 7/8.
Suppose there is background knowledge β = {p(B) ≥ 3/4}. Then the set
Pβ of probability functions that are consistent with this knowledge is repre-
sented by the shaded area in Fig. 3. (The triangular region represents the
set of all probability functions—these must satisfy p(A) + p(B) + p(C) = 1.)
Now the maximum entropy principle advocates adopting the probability func-
tion p from Pβ that is closest to the central probability function c which sets
c(A) = c(B) = c(C) = 1/3. Thus the maximum entropy function sets p(A) =
1/8, p(B) = 3/4 and p(C) = 1/8. This triggers both {A,B} and {B,C} since
p({A,B}) = 7/8 = p({B,C}). On the other hand, the minimum entropy prin-
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Figure 3: Maximum and minimum entropy principle probability functions.

ciple advocates adopting the probability function q from Pβ that is closest to
the probability function a which sets a(A) = 1 and a(B) = a(C) = 0. Thus
the minimum entropy principle sets q(A) = 1/4, q(B) = 3/4, q(C) = 0.25 This
triggers {A,B}, since q({A,B}) = 1≥ 7/8, but does not trigger {B,C}, since
q({B,C}) = 3/4 < 7/8. Hence in this case the minimum entropy principle li-
cences the most cautious course of action while the maximum entropy principle
seems to throw caution to the wind.

While this example shows that the most non-committal probability function
is not the most cautious in every situation, it may yet be the most cautious on
average. If it is most cautious when averaging over background knowledge β
and decisions (i.e. D ⊆ Ω and trigger levels τD ∈ [0, 1] such that a course of
action is triggered if p(D)≥τD) then adopting the maximum entropy principle
will be the best policy in the absence of any knowledge about β, D and τD.26

The average caution for a policy for setting belief function pβ can be mea-
sured by the proportion of β, D, τD that result in a course of action being trig-
gered. Define the trigger function T (β, D, τD) = 1 ⇔ pβ(D) > τD, and 0
otherwise. Then the average caution of a policy is the measure of β, D, τD for
which T (β, D, τD) = 1, i.e.

C =
1
z

∑
D⊆Ω

∫
β

∫
τD

T (β, D, τD)dβdτD

where z is a normalising constant, z = 2|Ω|
∫

β

∫
τD

1dβdτD. The smaller the
value of C, the more cautious the policy is on average.

25N.b. the ‘minimum entropy principle’ is a bit of a misnomer—while the probability
function q commits most to A, it does not actually have minimum entropy in this example.
Here entropy is in fact minimised by the probability function r that commits most to B,
defined by r(A) = 0, r(B) = 1, r(C) = 0.

26I leave it open here as to the mechanism that is used to select the trigger levels. These may
be set by experts perhaps, by maximising expected utility, or by some other decision-theoretic
procedure.
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However it turns out that the maximum entropy principle is no more cautious
than the minimum entropy principle, even if one considers average caution.
By way of example consider the two-dimensional case, Ω = {A,B}. Suppose
β constrains p(A) to lie in a closed interval [x, y] where 0 ≤ x ≤ y ≤ 1, and
that the trigger levels are all the same, τD = τ ∈ [0, 1]. We are interested
in the proportion of values of x, y, τ that trigger a decision. i.e. the volume
of the part of the cube [0, 1]3 defined by these parameters that triggers some
decision. We are only concerned with the half of the cube such that y ≥ x,
so z = 4 × 1/2 = 2. Trivially, {A,B} always gets triggered and ∅ only gets
triggered if τ = 0. Consider first the entropy maximisation policy. In this case
T (β, A, τ) = 1 ⇔ x≥ τ or τ ≤ 1/2 and y≥ τ , while T (β, B, τ) = 1 ⇔ x≤ 1 − τ
or τ≥1/2 and y≤1− τ . Then

C = z−1

∫
β

∫
τ

[T (β, {A,B}, τ) + T (β, A, τ) + T (β, B, τ) + T (β, ∅, τ)] dβdτ

= 2−1 [1/2 + 1/4 + 1/4 + 0] = 1/2.

Next consider the entropy minimisation policy. In this case T (β, A, τ) = 1 ⇔
y≥τ , while T (β, B, τ) = 1 ⇔ y≤1− τ . Now

C = 2−1 [1/2 + 1/3 + 1/6 + 0] = 1/2.

Thus we see that what entropy minimisation loses in caution by committing
to A, it offsets by a lack of commitment to B. On average, then, entropy
minimisation is just as cautious as entropy maximisation.

While it might appear that caution can not after all be used as an argument
in favour of the maximum entropy principle, such a conclusion would be too
hasty. In fact the maximum entropy principle is most cautious where it matters,
namely in the face of risky decisions, as we shall now see.

It is important to be cautious when a course of action should not be taken
lightly, and as we have seen, the importance attached to a decision tends to
be reflected in its trigger level. Thus when deciding between meningococcal
meningitis and ’flu, a high trigger level for ’flu indicates that the ensuing course
of action (treatment of ’flu rather than meningitis) is risky. Similarly when
deciding between innocence and guilt in a criminal case, there is a high trigger
level for guilt because the consequences of a mistaken judgement of guilt are
considered dire. Thus when we consider the average caution of a policy for
setting degrees of belief, it makes sense to focus on the decisions where caution
is important, namely those decisions D with a high trigger level τD.

So let us assume in our two-dimensional example that τ ≥ 1 − ε where
0≤ε≤1/2 is small. This extra constraint means that now z = 4× ε/2 = 2ε. As
before T (β, ∅, τ) = 1 has measure 0, but now T (β, {A,B}, τ) = 1 has measure
ε/2. In the entropy maximisation case both T (β, A, τ) = 1 and T (β, B, τ) = 1
have measure ε3/6, and

C = (2ε)−1
[
ε/2 + ε3/6 + ε3/6 + 0

]
= (1 + 2ε2/3)/4.

On the other hand in the entropy minimisation case T (β, A, τ) = 1 has measure
ε/2− 1/6[1− (1− ε)3], while T (β, B, τ) = 1 has measure ε3/6, and

C = (2ε)−1
[
ε/2 + ε/2− 1/6[1− (1− ε)3] + ε3/6 + 0

]
= (1 + ε)/4.
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Thus entropy maximisation offers the smaller average caution: if ε = 1/2 then
entropy minimisation is about 30% more cautious, while if ε = 1/10 it is about
10% more cautious.

In sum, one can, after all, appeal to caution to make a case for objective
Bayesianism. The maximum entropy principle is on average the more cautious
policy when it comes to risky decisions. This caution is explained by the fact that
the more middling one’s degrees of belief, the smaller the number of triggered
decisions on average, when trigger levels are high.

§9
Sensitivity Analysis

We have seen that an appeal to caution can be used to motivate the move from
empirically-based subjective Bayesianism to objective Bayesianism: the latter is
more cautious on average with respect to risky decisions. In this section we shall
consider a possible response. Arguably there is an extension of empirically-based
subjective Bayesianism that is more cautious still than objective Bayesianism.

Suppose background knowledge constrains a degree of belief to an interval.
Suppose too that empirically-based subjective Bayesianism is adopted, so that
an agent may choose any degree of belief within this interval. One may want
to be extra cautious and avoid taking a course of action if the decision to do so
depends on the degree of belief chosen. This leads to the following modification
of the decision rule: instead of embarking on a course of action iff one’s own de-
gree of belief triggers the action, embark on it iff every possible agent would too,
i.e. iff the whole interval of possible degrees of belief is greater than the trigger
level. This decision rule might be called the sensitivity analysis rule—a decision
is only taken if it is not sensitive to subjective choice of prior probability.27

Under this view, degrees of belief are partly a matter of subjective choice,
but, once trigger levels are chosen,28 it is an objective matter as to whether a
decision will be triggered. In two dimensions this decision procedure exhibits the
same average caution as objective Bayesianism over risky decisions.29 However,
in higher dimensions it will be more cautious in general. Recall the example
of Fig. 3: here the maximum entropy principle triggers both decisions, the
minimum entropy principle triggers one decision, while the sensitivity analysis
decision procedure triggers neither.

Thus it seems that by appealing to caution the objective Bayesian is shooting
herself in the foot. While such an appeal favours objective Bayesianism over
empirically-based subjective Bayesianism as normally construed, it also favours
the sensitivity analysis modification of empirically-based subjective Bayesianism
over objective Bayesianism.

However, the sensitivity analysis approach is conceptually rather unattrac-
tive. This is because it divorces the connection between belief and action: un-
der the sensitivity analysis approach one’s degrees of belief have no bearing on
whether one decides to take a course of action. It matters not a fig the extent
to which one believes a patient has meningitis, because the decision as to what

27This type of rule is sometimes also called a robust Bayesian rule.
28The trigger levels themselves may depend on an agent’s utilities and thus be subjective.
29Assuming, as before, that β constrains p(A) to lie in a closed interval.
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treatment to give is based on the range of permissible beliefs one might adopt,
not on one’s own actual beliefs. Arguably this is an unacceptable consequence of
the sensitivity analysis approach which more than offsets its merit with respect
to considerations of caution.

But perhaps there is some way of putting the sensitivity analysis approach
on firmer footing. Perhaps one can retain its caution while re-establishing the
link between belief and action. We shall investigate two possible strategies for
salvaging this approach in the next two sections.

§10
Higher-Order Beliefs

The sensitivity analysis approach bases decisions on the range of beliefs that
an agent might adopt, rather than on the agent’s own beliefs. If one wants to
retain this decision mechanism but also to insist that an agent’s decisions be
made on the basis of her own beliefs then one must re-interpret her beliefs as
somehow encapsulating this whole range.

Suppose for example that empirical constraints force p(A) ∈ [0.7, 0.8]. Under
the sensitivity analysis approach the agent is free to choose whichever degree of
belief she likes from this interval, but a decision on A will only be triggered if the
whole interval triggers, i.e. if 0.7 is greater than the trigger level. Consider an
alternative viewpoint—a Bayesian who is uncertain as to which degree of belief
x to adopt from within this interval. In the face of this uncertainty higher-
order degrees of belief, such as p(x ∈ [0.7, 0.75]), become relevant. Indeed the
agent may form a prior belief distribution over x, and base her decision for A
on various characteristics of this distribution. One decision rule, for instance,
involves triggering A if p(x≥τA) = 1.

This alternative viewpoint yields a type of empirically-based subjective Bay-
esianism: an agent’s degrees of belief are constrained just by empirical knowl-
edge. It is also compatible with cautious decision rules, such as that exemplified
above. Moreover by admitting higher order degrees of belief it reinstates the
link between belief and action: decisions are triggered by features of these higher
order beliefs. Thus this approach appears to combine the best of all worlds—
perhaps for that reason it is very popular in Bayesian statistics.

But all is not plain sailing for higher-order degrees of belief. A decision rule,
such as that given above, is only cautious under some priors over x. If x is
uniformly distributed over [0.7, 0.8] then p(x≥ τA) = 1 iff 0.7≥ τA, the same
cautious decision rule as the sensitivity analysis approach. On the other hand,
if the probability of x is concentrated on the maximal point, p(x = 0.8) = 1,
then the decision on A triggers just when 0.8≥τA—in this case the decision rule
is considerably less cautious, and in particular less cautious than the maximum
entropy principle. Now the empirically-based subjective Bayesian can not ad-
vocate setting one prior rather than another, since there is no extra empirical
evidence to constrain choice of prior. Indeed the agent is free to choose any prior
she wishes, and if she sets p(x = 0.8) = 1 she is far from cautious. Suggesting
that the agent forms a prior over priors only defers the problem, leading to a
vicious regress.

Thus we see that while the higher-order belief approach is compatible with
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cautious decision rules, it is also compatible with rash decision rules. It cer-
tainly can not be argued that this approach is any more cautious than the
objective Bayesian methodology. Higher-order beliefs do not, after all, lead to
the salvation of sensitivity analysis.

§11
Interval-Valued Beliefs

There is another way one might try to salvage the cautiousness of sensitivity
analysis. Again, this involves re-interpreting an agent’s beliefs as encapsulating
the whole range of empirically constrained values. But this time, rather than
invoking uncertainty as to which degree of belief to adopt, one instead rejects the
Bayesian idea that an agent’s partial beliefs are numerical point-valued degrees
of belief, i.e. probabilities. Under this approach an agent’s partial belief in A
is identified with the whole interval yielded by empirical constraints, bel(A) =
[0.7, 0.8] in our example. Kyburg Jr (2003) provides a recent exposition of this
strategy.30

Interval-valued beliefs offer a very appealing reconstruction of the sensitivity
analysis approach. A natural decision rule proceeds thus: trigger a course of
events on A iff the agent’s partial belief in A is entirely above the trigger level for
A, in our example, iff [0.7, 0.8] ≥ τA, i.e. iff 0.7≥τA. Not only does the resulting
framework capture the cautiousness of the sensitivity analysis approach, it also
ties the triggering of a decision to the agent’s own partial belief, rather than the
beliefs of other possible agents.

The crunch point is this. The partial belief approach appears to be superior
to objective Bayesianism with respect to caution; does this gain outweigh any
difficulties that accompany the rejection of point-valued degrees of belief in
favour of interval-valued beliefs?

I would argue not. First of all, there are qualifications to be made about the
cautiousness of interval-valued beliefs that diminish their supposed superiority
over objective Bayesianism. Second, the problems that accompany interval-
valued beliefs arguably outweigh any remaining benefit in terms of caution.

First to the qualifications. The typical way of generating interval-valued be-
liefs runs as follows.31 Sample an attribute A from a population; say the sample
frequency is 0.75; under certain assumptions about the sampling mechanism
and the population, one might form a confidence interval, say [0.7, 0.8] for the
population frequency; set one’s partial belief in A to this confidence interval.
The key problem with this approach is that the confidence interval will depend
upon the chosen confidence level as well as the sampling assumptions—thus the
endpoints of the interval are somewhat arbitrary. But the decision procedure
depends crucially on the endpoints: a 95% confidence interval [0.7, 0.8] may
trigger a course of action for A while a 99.9% confidence interval [0.5, 1] may
fail to trigger the action.

There is no non ad hoc way of determining a suitable confidence interval and
so this approach must be abandoned if one wants an objective, cautious decision

30See Kyburg Jr and Teng (2001) for the formal details of the this approach. Kyburg Jr and
Teng (1999) argue that the interval approach performs better than the subjective Bayesian
approach in the short run in a betting set-up.

31Kyburg Jr and Teng (2001, §11.3) adopt this sort of approach.
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procedure. Perhaps the best alternative strategy is just to set one’s partial belief
in A to the sample frequency 0.75—this is, after all, the most probable candidate
for the population frequency. But then the belief is not interval-valued after all,
it is point-valued. Thus the interval-valued approach loses its edge. (Arguably
this is a qualification to the interval-valued belief approach rather than a reason
to dismiss it altogether: one can still adopt an interval-valued belief in certain
circumstances, for example if there are two samples with sample frequencies 0.75
and 0.77 respectively then it seems natural to view the whole interval [0.75, 0.77]
as a candidate for partial belief.)32

There is a further qualification to be made to the supposed superiority of
the interval approach over the objective Bayesian approach. In a fully-blown
decision-theoretic setting where potential losses are quantifiable, there is a sense
in which interval-valued beliefs perform no better than objective Bayesian de-
grees of belief. The maximum entropy principle and the sensitivity analysis
approach both behave optimally in the sense that they both succeed in min-
imising worst-case expected logarithmic loss. (Again arguably this is merely
a qualification: one may not care very much about minimising worst-case ex-
pected logarithmic loss. On the other hand Grünwald and Dawid (2004) show
that a generalised version of the maximum entropy principle is equivalent to the
sensitivity analysis approach in that they both minimise loss for an arbitrary
loss function, not just logarithmic loss.)

We have seen then that the advantages of interval-valued beliefs with re-
spect to caution are somewhat diminished. Next we turn to the problems that
accompany interval-valued beliefs. As noted in §5, it is not empirical evidence
that adjudicates between the two approaches; the problems with interval-valued
beliefs are pragmatic and conceptual.

From the pragmatic point of view, it is harder to obtain and work with
interval-valued beliefs than point-valued beliefs. Roughly speaking it is twice as
hard, since there are twice as many numbers to have to deal with: to each point-
valued degree of belief there are the two endpoints of the corresponding interval-
valued belief.33 Intervals also make it hard to do things that are simple using
numbers. For instance, suppose one wants to either trigger a course of action
for A, or otherwise to trigger another course of action for Ā: to give antibiotics
if meningococcal meningitis is suspected, otherwise paracetamol. In the case of
point-values degrees of belief one simply needs to ensure that τA + τĀ = 1, for
then if p(A)≥ τA one action is taken, otherwise p(Ā) = 1− p(A) > τĀ and the
other action is taken.34 On the other hand if partial beliefs are intervals then
for any non-extreme trigger levels there are partial beliefs ([x, y] where x < τA

and y > 1− τĀ) such that neither action triggers.35

There are thus pragmatic reasons to favour point-valued degrees of belief
over interval-valued beliefs. Accordingly one might reason something like this:
the formalism of point-valued degrees of belief offers a first approximation to
how one should reason; the formalism of interval-valued beliefs offers a second

32See Williamson (2005a, §5.3) for discussion of this type of constraint on rational belief.
33Cozman (2000) develops a computational framework for interval-valued beliefs.
34One would of course also need a policy to decide which action is triggered if p(A) = τA

(in which case p(Ā) = τĀ).
35One can get round this problem by insisting that trigger levels be functions of the partial

beliefs themselves as well as the decision outcomes A or Ā. The point is not that intervals
make things impossible, just that intervals make things more complicated.
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approximation; the first approximation tends to be easier to use in practice
and there is little to be gained (in terms of caution) by using the second ap-
proximation; thus one should use the first approximation by default. But such
a view assumes that there is essentially more to interval-valued beliefs than
point-valued beliefs—that conceptually they add something. There are reasons
for doubting this perspective, as we shall now see.

From the conceptual point of view, the interval-valued belief approach is
caught in a dilemma: it either lacks the intuitively compelling connection be-
tween beliefs and betting quotients that underpins the Bayesian approach, or
it fails to add anything conceptually to the Bayesian approach. One of the
key points in favour of the Bayesian approach is that an agent’s partial belief
in E is interpretable as a betting quotient, ‘the rate p at which he would be
ready to exchange the possession of an arbitrary sum S (positive or negative)
dependent on the occurrence of a given event E, for the possession of the sum
pS’.36 One cannot simply identify an interval-valued partial belief with a bet-
ting quotient—a betting quotient is a single number but an interval is a set of
numbers. One might try, as Borel (1943, §3.8) did, to interpret the interval as a
set of acceptable betting quotients.37 To do so one must adopt a different bet-
ting set-up to that of the Bayesian, one without the requirement that the agent
buys and sells bets at the same rate, i.e. one in which S must be positive rather
than either positive or negative. (Otherwise, if the agent has more than one
betting quotient in the same outcome then she can simply be Dutch booked—a
set of bets can be found that forces her to lose money whatever happens.) But
Adams (1964, §7) showed formally that when this strategy is pursued one can
identify a single probability function that can be thought of as representing bet-
ting quotients that the agent regards as fair.38 Thus this new betting set-up is a
dead end for the proponent of interval-valued beliefs: a set of betting quotients
[0.7, 0.8] for an outcome in the new set-up turns out to be equivalent to a single
betting quotient 0.75 in the original set-up—it is just a more complicated way
of saying the same thing. In sum, by trying to provide a betting interpreta-
tion for interval-valued partial beliefs one just ends up motivating point-valued
degrees of belief; betting fails to provide a distinctive foundation for interval-
valued partial beliefs after all, and interval-valued beliefs should not be thought
of as a second approximation or refinement of point-valued beliefs. Thus the
proponent of interval-valued beliefs must either accept that they are essentially
just a complication of point-valued degrees of belief, or, if they are to differ
conceptually, they lack any link with betting behaviour that accounts for that
difference. In the absence of a viable betting interpretation, the question arises
as to how interval-valued beliefs are to be interpreted: what does it mean to
believe A with value [0.7, 0.8]?39 In either case, it is hard to see how intervals
could be better candidates for partial beliefs than numbers.

The proponent of intervals may respond here that the Bayesian link be-
tween partial beliefs and betting quotients is less attractive than one might

36(de Finetti, 1937, p. 62). Ramsey (1926, p. 172) proposed a similar betting set-up: ‘The
old-established way of measuring a person’s belief is to propose a bet, and see what are the
lowest odds which he will accept’.

37See also Smith (1961) and Walley (1991, §1.6.3).
38See also Koopman (1940a,b).
39As Walley (1991, p. 22) himself notes, ‘unless the conclusions have a behavioural interpre-

tation, it is not clear how they can be used for making decisions of for guiding future inquiry
and experimentation.’
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think. Of course, if there are grounds for abandoning Bayesian betting set-up
then the absence of a viable betting interpretation is not such a disadvantage
for interval-valued beliefs. One objection to the Bayesian betting set-up is that
human agents can’t always evaluate their betting quotients in terms of unique
real numbers—human beliefs are simply not so precise.40 Another is that it
is rather impractical to elicit degrees of belief using a series of bets, since as
noted in §6 this is a time-consuming operation, and in any case people are often
either reluctant to bet at all or happy to lose money whatever happens. These
points are well made, but by-the-by in our context because they only trou-
ble the subjective and empirically-based versions of Bayesianism, not objective
Bayesianism. Under objective Bayesianism, agents do not need to search their
souls for real numbers to attach to beliefs, nor is the betting set-up required to
measure those degrees of belief. Degrees of belief are determined by the maxi-
mum entropy principle and they are measured by maximising entropy. (In this
age of mechanisation human agents and artificial agents alike can use computing
power to work out the extent they ought to believe various outcomes.) Thus
for objective Bayesianism the betting interpretation is only important for the
meaning it gives to degrees of belief. The fact that the betting set-up is simplis-
tic, or an idealisation, or impractical, is neither here nor there—the objective
Bayesian does not go on to invoke the betting set-up, as Ramsey did, as an
elicitation or measurement tool.

There is another conceptual problem that besets the interval-valued belief
approach. One might argue, as de Cooman and Miranda do in this volume,
that interval-valued beliefs are superior to point-valued beliefs because they can
represent the amount of knowledge that grounds a belief. Under the objective
Bayesian account, a degree of belief 0.5 that it will snow in Stroud today may
be based on total ignorance, or it may be based on good evidence, e.g. the
knowledge that the frequency of it snowing in Stroud on a day like today is
1
2 . In contrast, the interval-valued approach distinguishes between these two
cases: while in the latter case the belief might have value 0.5, in the former
case the belief would have value [0, 1]. In a sense, then, interval-valued beliefs
tell us about the knowledge on which they are based; this is supposed to be an
advantage of the interval-valued approach.

But this is evidence of a conceptual problem with the interval-valued ap-
proach, not an advantage. The problem is this. The question ‘how much knowl-
edge does the agent have that pertains to it snowing in Stroud today?’ is a
question about knowledge, not belief. Consequently, it should not be the model
of belief that answers this question; it should be the knowledge component of the
agent’s epistemic state. But on the interval-valued approach, it is the belief it-
self that is used to answer the question (and typically there is no separate model
of the agent’s knowledge). Thus on this approach, the belief model conflates
concerns to do with knowledge and belief. On the other hand, the objective
Bayesian approach maintains a nice distinction between knowledge and belief:
an agent has background knowledge which is then used to constrain her choice
of degrees of belief; the former component contains information about the ex-
tent of the agent’s knowledge, while the latter contains information about the
strength of the agent’s beliefs; neither can be used to answer questions about the
other. The interval-valued approach, then, muddles issues to do with knowledge

40See e.g. Kyburg Jr (1968).
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and belief, while the objective Bayesian approach keeps them apart. But the
goal of both approaches is to model a rational agent’s epistemic state, and this
requires a sharp distinction between knowledge and belief. It is a fact of the
matter that some of our full beliefs are of a higher grade than others and are
more entrenched in the sense that we are less willing to revise them. I have full
belief that a point chosen at random in a ball will not be its centre; I also have
a full belief that I am alive; I’m quite willing to revise the former belief in the
face of evidence, but not the latter—it is knowledge, not belief, that accounts
for this distinction. Hence the objective Bayesian approach, by maintaining a
proper distinction between knowledge and belief, offers a better model of an
agent’s epistemic state.

To conclude, the limited gains that interval-valued beliefs offer in terms of
caution are arguably offset by the conceptual as well as pragmatic advantages
of point-valued beliefs.

§12
Summary

We see then that there is a case for preferring objective Bayesianism over an
empirical-constraint theory of rational belief. Objective Bayesianism is more
cautious than empirically-based subjective Bayesianism; while it may be less
cautious than the interval-valued belief approach, it offers pragmatic advantages
and a simple interpretation in terms of betting quotients.

References

Adams, E. W. (1964). On rational betting systems. Archiv für mathematische
Logik und Grundlagenforschung, 6:7–29 and 112–128.

Borel, E. (1943). Probabilities and life. Dover, New York, 1962 edition.

Cozman, F. G. (2000). Credal networks. Artificial Intelligence, 120:199–233.

de Finetti, B. (1937). Foresight. its logical laws, its subjective sources. In
Kyburg, H. E. and Smokler, H. E., editors, Studies in subjective probability,
pages 53–118. Robert E. Krieger Publishing Company, Huntington, New York,
second (1980) edition.

Gillies, D. (1991). Intersubjective probability and confirmation theory. British
Journal for the Philosophy of Science, 42:513–533.

Gottfried, K. and Wilson, K. G. (1997). Science as a cultural construct. Nature,
386:545–547. With discussion in vol. 387 p. 543.

Grünwald, P. and Dawid, A. P. (2004). Game theory, maximum entropy, mini-
mum discrepancy, and robust Bayesian decision theory. Annals of Statistics,
32(4):1367–1433.

Halpern, J. Y. (1999a). A counterexample to theorems of Cox and Fine. Journal
of Artificial Intelligence Research, 10:67–85.

23



Halpern, J. Y. (1999b). Cox’s theorem revisited. Journal of Artificial Intelli-
gence Research, 11:429–435.

Hosni, H. and Paris, J. (2005). Rationality as conformity. Synthese, 144(3):249–
285.

Howson, C. and Urbach, P. (1989). Scientific reasoning: the Bayesian approach.
Open Court, Chicago IL, second (1993) edition.

Jaynes, E. T. (1957). Information theory and statistical mechanics. The Physical
Review, 106(4):620–630.

Jaynes, E. T. (2003). Probability theory: the logic of science. Cambridge Uni-
versity Press, Cambridge.

Koopman, B. O. (1940a). The axioms and algebra of intuitive probability.
Annals of Mathematics, 41(2):269–292.

Koopman, B. O. (1940b). The bases of probability. Bulletin of the American
Mathematical Society, 46:763–774.

Kyburg Jr, H. E. (1968). Bets and beliefs. American Philosophical Quarterly,
5(1):54–63.

Kyburg Jr, H. E. (2003). Are there degrees of belief? Journal of Applied Logic,
1:139–149.

Kyburg Jr, H. E. and Teng, C. M. (1999). Choosing among interpretations of
probability. In Proceedings of the 15th Annual Conference on Uncertainty in
Artificial Intelligence (UAI-99), pages 359–365. Morgan Kaufmann Publish-
ers, San Francisco, CA.

Kyburg Jr, H. E. and Teng, C. M. (2001). Uncertain inference. Cambridge
University Press, Cambridge.

Paris, J. B. (1994). The uncertain reasoner’s companion. Cambridge University
Press, Cambridge.
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